Trustco Heating and Cooling Navigation Trustco Heating and Cooling Home Page Trustco Heating and Cooling Specials Tips from Trustco Heating and Cooling Trustco Heating and Cooling Testimonials Contact Trustco Heating and Cooling Trustco Maintenance Plans

Let the experts at Trustco help you decide weather to repair, rebuild or replace your heating or cooling equipment

 

Trustco Heating and Air

BBB, Google, Angies List Reviews Google Reviews - Trustco Heating and Cooling Angie's List Reviews - Trustco Heating and Cooling Trustco BBB A+ Rating

Air Conditioners Center City PA

Air conditioning (often referred to as airconAC or A/C) is the process of altering the properties of air (primarilytemperature and humidity) to more favourable conditions, typically with the aim of distributing the conditioned air to an occupied space to improve thermal comfort and indoor air quality.

In common use, an air conditioner is a device that lowers the air temperature. The cooling is typically achieved through a refrigeration cycle, but sometimes evaporation orfree cooling is used.

In the most general sense, air conditioning can refer to any form of technology that modifies the condition of air (heating, cooling, (de-)humidification, cleaning, ventilation, or air movement). However, in construction, such a complete system of heating, ventilation, and air conditioning is referred to as HVAC (as opposed to AC).

The basic concept behind air conditioning is said to have been applied in ancient Egypt, where reeds were hung in windows and were moistened with trickling water. The evaporation of water cooled the air blowing through the window. This process also made the air more humid, which can be beneficial in a dry desert climate. In Ancient Rome, water from aqueducts was circulated through the walls of certain houses to cool them. Other techniques in medieval Persia involved the use of cisterns and wind towers to cool buildings during the hot season.

Modern air conditioning emerged from advances in chemistry during the 19th century, and the first large-scale electrical air conditioning was invented and used in 1902 by Willis Carrier. The introduction of residential air conditioning in the 1920s helped enable the great migration to the Sun Belt in the US. St George's Hall in Liverpool England, built between 1841 and 1854, was awarded a Blue Plaque by the Heritage Group of the CIBSE in 2005, recognising it as the world's first air conditioned building.

Air Handler Center City PA

An air handler, or air handling unit (often abbreviated to AHU), is a device used to regulate and circulate air as part of a heating, ventilating, and air-conditioning (HVAC) system. An air handler is usually a large metal box containing ablower, heating or cooling elements, filter racks or chambers, sound attenuators, and dampers. Air handlers usually connect to a ductwork ventilation system that distributes the conditioned air through the building and returns it to the AHU. Sometimes AHUs discharge (supply) and admit (return) air directly to and from the space served without ductwork.

Small air handlers, for local use, are called terminal units, and may only include an air filter, coil, and blower; these simple terminal units are called blower coils or fan coil units. A larger air handler that conditions 100% outside air, and no recirculated air, is known as a makeup air unit (MAU). An air handler designed for outdoor use, typically on roofs, is known as a packaged unit (PU) or rooftop unit (RTU).

Air handlers may need to provide heating, cooling, or both to change the supply air temperature, and humidity level depending on the location and the application. Such conditioning is provided by heat exchanger coil(s) within the air handling unit air stream, such coils may be direct or indirect in relation to the medium providing the heating or cooling effect.

Direct heat exchangers include those for gas-fired fuel-burning heaters or a refrigeration evaporator, placed directly in the air stream. Electric resistance heaters and heat pumps can be used as well. Evaporative cooling is possible in dry climates.

Indirect coils use hot water or steam for heating, and chilled water for cooling (prime energy for heating and cooling is provided by central plant elsewhere in the building). Coils are typically manufactured from copper for the tubes, with copper or aluminium fins to aid heat transfer. Cooling coils will also employ eliminator plates to remove and drain condensate. The hot water or steam is provided by a central boiler, and the chilled water is provided by a central chiller. Downstream temperature sensors are typically used to monitor and control "off coil" temperatures, in conjunction with an appropriate motorized control valve prior to the coil.

If dehumidification is required, then the cooling coil is employed to over-cool so that the dew point is reached and condensation occurs. A heater coil placed after the cooling coil re-heats the air (therefore known as a re-heat coil) to the desired supply temperature. This has the effect of reducing the relative humidity level of the supply air.

In colder climates, where winter temperatures regularly drop below freezing, then frost coils or pre-heat coils are often employed as a first stage of air treatment to ensure that downstream filters or chilled water coils are protected against freezing. The control of the frost coil is such that if a certain off-coil air temperature is not reached then the entire air handler is shut down for protection.

Boiler Center City PA

boiler is a closed vessel in which water or other fluid is heated. The fluid does not necessarily boil. (In North America the term "furnace" is normally used if the purpose is not actually to boil the fluid.) The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including central heatingboiler-based power generationcooking, and sanitation.

The source of heat for a boiler is combustion of any of several fuels, such as woodcoaloil, or natural gasElectric steam boilersuse resistance- or immersion-type heating elements. Nuclear fission is also used as a heat source for generating steam, either directly (BWR) or, in most cases, in specialized heat exchangers called "steam generators" (PWR). Heat recovery steam generators (HRSGs) use the heat rejected from other processes such as gas turbine.

Boilers can be classified into the following configurations:

  • "Pot boiler" or "Haycock boiler": a primitive "kettle" where a fire heats a partially filled water container from below. 18th century Haycock boilers generally produced and stored large volumes of very low-pressure steam, often hardly above that of the atmosphere. These could burn wood or most often, coal. Efficiency was very low.
  • Fire-tube boiler. Here, water partially fills a boiler barrel with a small volume left above to accommodate the steam (steam space). This is the type of boiler used in nearly all steam locomotives. The heat source is inside a furnace or firebox that has to be kept permanently surrounded by the water in order to maintain the temperature of the heating surface below the boiling point. The furnace can be situated at one end of a fire-tube which lengthens the path of the hot gases, thus augmenting the heating surface which can be further increased by making the gases reverse direction through a second parallel tube or a bundle of multiple tubes (two-pass or return flue boiler); alternatively the gases may be taken along the sides and then beneath the boiler through flues (3-pass boiler). In the case of a locomotive-type boiler, a boiler barrel extends from the firebox and the hot gases pass through a bundle of fire tubes inside the barrel which greatly increase the heating surface compared to a single tube and further improve heat transfer. Fire-tube boilers usually have a comparatively low rate of steam production, but high steam storage capacity. Fire-tube boilers mostly burn solid fuels, but are readily adaptable to those of the liquid or gas variety.
  • Water-tube boiler. In this type, tubes filled with water are arranged inside a furnace in a number of possible configurations: often the water tubes connect large drums, the lower ones containing water and the upper ones, steam and water; in other cases, such as a monotube boiler, water is circulated by a pump through a succession of coils. This type generally gives high steam production rates, but less storage capacity than the above. Water tube boilers can be designed to exploit any heat source and are generally preferred in high-pressure applications since the high-pressure water/steam is contained within small diameter pipes which can withstand the pressure with a thinner wall.
  • Flash boiler. A specialized type of water-tube boiler.
  • Fire-tube boiler with Water-tube firebox. Sometimes the two above types have been combined in the following manner: the firebox contains an assembly of water tubes, called thermic siphons. The gases then pass through a conventional firetube boiler. Water-tube fireboxes were installed in many Hungarian locomotives, but have met with little success in other countries.
  • Sectional boiler. In a cast iron sectional boiler, sometimes called a "pork chop boiler" the water is contained inside cast iron sections. These sections are assembled on site to create the finished boiler.

Furnaces Center City PA

furnace is a device used for heating. The name derives from Latin fornaxoven.

In American English and Canadian English usage, the term furnace on its own refers to the household heating systems based on a central furnace (known either as a boiler, or a heater in British English), and sometimes as a synonym for kiln, a device used in the production of ceramics. In British English, a furnace is an industrial furnace used for many things, such as the extraction of metalfrom ore (smelting) or in oil refineries and other chemical plants, for example as the heat source for fractional distillation columns.

The term furnace can also refer to a direct fired heater, used in boiler applications in chemical industries or for providing heat to chemical reactions for processes like cracking, and is part of the standard English names for many metallurgical furnaces worldwide.

The heat energy to fuel a furnace may be supplied directly by fuel combustion, by electricity such as the electric arc furnace, or through induction heating in induction furnaces.

household furnace is a major appliance that is permanently installed to provide heat to an interior space through intermediary fluid movement, which may be airsteam, or hot water. (Heating appliances that use steam or hot water as the fluid are normally referred to as a residential steam boiler or residential hot water boiler.) The most common fuel source for modern furnaces in the United States is natural gas; other common fuel sources include LPG (liquefied petroleum gas), fuel oilcoal or wood. In some cases electrical resistance heating is used as the source of heat, especially where the cost of electricity is low.

Modern high-efficiency furnaces can be 98% efficient and operate without a chimney. The small amount of waste gas and heat are mechanically ventilated through PVC pipes that can be vented through the side or roof of the house. Fuel efficiency in a gas furnace is measured in AFUE, or Annual Fuel Utilization Efficiency.

Residential furnaces can be divided into four general categories, based on efficiency and design.

The first category would be "gravity fed", atmospheric burner furnaces. These furnaces consisted of cast-iron or riveted-steel heat exchangers built within an outer shell or brick, masonry or steel. The heat exchangers were vented through brick or masonry chimneys. Air circulation depended on large, upwardly pitched pipes constructed of wood or metal. The pipes would channel the warm air into floor or wall vents inside the home. This method of heating worked because warm air rises. The system was simple, had few controls, a single automatic gas valve and no blower. These furnaces could be made to work with any fuel simply by adapting the burner area. They have been operated with wood, coke, coal, trash, paper, natural gas and fuel oil. Furnaces that used solid fuels required daily maintenance to remove ash and "clinkers" that accumulated in the bottom of the burner area. In later years, these furnaces were adapted with electric blowers to aid air distribution and speed moving heat into the home. Gas and oil-fired gravity systems were usually controlled by a thermostat inside the home, while most wood and coal-fired furnaces were controlled by the amount of fuel in the burner and position of the fresh-air damper on the burner access door.

The second category of residential furnace is the forced-air, atmospheric burner style with a cast-iron or sectional steel heat exchanger. This style furnace was used to replace the big, gravity-fed behemoths, and was sometimes installed on the existing gravity duct work. The blowers were belt driven and designed for a wide range of speeds. These furnaces were big and bulky compared to modern furnaces, and had heavy-steel exteriors with bolt-on removable panels. Energy efficiency would range anywhere from just over 50% to upward of 65% AFUE. This style furnace still used large, masonry or brick chimneys for flues and was eventually designed to accommodate air-conditioning systems.

The third category of furnace is the forced-draft, mid-efficiency furnace with a steel heat exchanger and multi-speed blower. These furnaces were physically much more compact than previous styles. They were equipped with combustion air blowers that would pull air through the heat exchanger which greatly increased fuel efficiency while allowing the heat exchangers to become smaller. These furnace have multi-speed blowers and were designed to work with central air-conditioning systems.

The fourth category of furnace is the high-efficiency, or condensing furnace. High efficiency furnaces can achieve from 89% to 98% fuel efficiency. This style of furnace includes a sealed combustion area, combustion draft inducer and a secondary heat exchanger. The furnace pulls so much heat out of the combustion process, that it actually condenses water vapor and other chemicals (which form a mild acid) as it operates. There is so little heat lost to the flue, that the flue pipes are normally installed with Schedule 40 PVC pipe versus metal vent pipe. Because of the combustion blower, the PVC exhaust piping can be routed vertically or horizontally as it exits the structure. The most efficient arrangement for high-efficiency furnaces include PVC piping that brings fresh combustion air from the outside of the home directly to the furnace. Normally the combustion-air (fresh air) PVC is routed alongside the exhaust PVC during installation and the pipes exit through a sidewall of the home in the same location.

High efficiency furnaces typically deliver a 25% to 35% fuel savings over a 60% AFUE furnace.

Heat Pumps Center City PA

heat pump is a device that provides heat energy from a source of heat to a destination called a "heat sink". Heat pumps are designed to move thermal energy opposite to the direction of spontaneous heat flow by absorbing heat from a cold space and releasing it to a warmer one. A heat pump uses some amount of external power to accomplish the work of transferring energy from the heat source to the heat sink.

While air conditioners and freezers are familiar examples of heat pumps, the term "heat pump" is more general and applies to many HVAC devices used for space heating or space cooling. When a heat pump is used for heating, it employs the same basic refrigeration-type cycle used by an air conditioner or a refrigerator, but in the opposite direction - releasing heat into the air-conditioned space rather than the surrounding environment. In this use, heat pumps generally draw heat from the cooler external air or from the ground.

In heating, ventilation and air conditioning (HVAC) applications, the term heat pump usually refers to easily reversible vapor-compression refrigeration devices optimized for high efficiency in both directions of thermal energy transfer.

Heat spontaneously flows from warmer places to colder spaces. A heat pump can absorb heat from a cold space and release it to a warmer one. "Heat" is not conserved in this process, which requires some amount of external high grade (low-entropy) energy, such as electricity.

Heat pumps are used to provide heating because less high-grade energy is required for their operation than appears in the released heat. Most of the energy for heating comes from the external environment, and only a fraction comes from electricity (or some other high-grade energy source required to run a compressor). In electrically powered heat pumps, the heat transferred can be three or four times larger than the electrical power consumed, giving the system a coefficient of performance (COP) of 3 or 4, as opposed to a COP of 1 of a conventional electrical resistance heater, in which all heat is produced from input electrical energy.

Heat pumps use a refrigerant as an intermediate fluid to absorb heat where it vaporizes, in the evaporator, and then to release heat where the refrigerant condenses, in the condenser. The refrigerant flows through insulated pipes between the evaporator and the condenser, allowing for efficient thermal energy transfer at relatively long distances.

Reversible heat pumps work in either thermal direction to provide heating or cooling to the internal space. They employ a reversing valve to reverse the flow of refrigerant from the compressor through the condenser and evaporation coils.

  • In heating mode, the outdoor coil is an evaporator, while the indoor is a condenser. The refrigerant flowing from the evaporator (outdoor coil) carries the thermal energy from outside air (or soil) indoors, after the fluid's temperature has been augmented by compressing it. The indoor coil then transfers thermal energy (including energy from the compression) to the indoor air, which is then moved around the inside of the building by an air handler. Alternatively, thermal energy is transferred to water, which is then used to heat the building via radiators or underfloor heating. The heated water may also be used for domestic hot water consumption. The refrigerant is then allowed to expand, cool, and absorb heat to reheat to the outdoor temperature in the outside evaporator, and the cycle repeats. This is a standard refrigeration cycle, save that the "cold" side of the refrigerator (the evaporator coil) is positioned so it is outdoors where the environment is colder.
  • In cooling mode the cycle is similar, but the outdoor coil is now the condenser and the indoor coil (which reaches a lower temperature) is the evaporator. This is the familiar mode in which air conditioners operate.

Ductwork Center City PA

Ducts are used in heating, ventilation, and air conditioning (HVAC) to deliver and remove air. The needed airflows include, for example, supply airreturn air, and exhaust air. Ducts commonly also deliver ventilation air as part of the supply air. As such, air ducts are one method of ensuring acceptable indoor air quality as well as thermal comfort.

A duct system is also called ductwork. Planning (laying out), sizing, optimizing, detailing, and finding the pressure losses through a duct system is called duct design.

Air pressure combined with air duct leakage can lead to a loss of energy in a HVAC system. Sealing leaks in air ducts reduces air leakage, optimizes energy efficiency, and controls the entry of pollutants into the building. Before sealing ducts it is imperative to ensure the total external static pressure of the duct work, and if equipment will fall within the equipment manufacturer's specifications. If not, higher energy usage and reduced equipment performance may result.

Commonly available duct tape should not be used on air ducts (metal, fiberglass, or otherwise) that are intended for long-term use. The adhesive on so called duct tape dries and releases with time. Building codes and UL standards call for special fire-resistant tapes, often with foil backings and long lasting adhesives.

Signs of leaks

Signs of leaky or poorly performing air ducts include:

  • Utility bills in winter and summer months above average relative to rate fluctuation
  • Spaces or rooms that are difficult to heat or cool
  • Duct location in an attic, attached garage, leaky floor cavity, crawl space or unheated basement.

Thermostats Center City PA

thermostat is a component of a control system which senses the temperature of a system so that the system's temperature is maintained near a desired setpoint. The thermostat does this by switching heating or cooling devices on or off, or regulating the flow of a heat transfer fluid as needed, to maintain the correct temperature. The name is derived from the Greek words thermos "hot" and statos "a standing".

A thermostat may be a control unit for a heating or cooling system or a component part of a heater or air conditioner. Thermostats can be constructed in many ways and may use a variety of sensors to measure the temperature. The output of the sensor then controls the heating or cooling apparatus. A thermostat may switch on and off at temperatures either side of the setpoint. This prevents equipment damage from frequent switching.

Early technologies included mercury thermometers with electrodes inserted directly through the glass, so that when a certain (fixed) temperature was reached the contacts would be closed by the mercury. These were accurate to within a degree of temperature.

Common sensor technologies in use today include:

These may then control the heating or cooling apparatus using:

  • Direct mechanical control
  • Electrical signals
  • Pneumatic signals

Newer digital thermostats have no moving parts to measure temperature and instead rely on thermistors or other semiconductor devices such as a resistance thermometer (resistance temperature detector). Typically one or more regular batteries must be installed to operate it, although some so-called "power stealing" digital thermostats use the common 24 volt AC circuits as a power source, but will not operate on thermopile powered "millivolt" circuits used in some furnaces. Each has an LCD screen showing the current temperature, and the current setting. Most also have a clock, and time-of-day and even day-of-week settings for the temperature, used for comfort and energy conservation. Some advanced models have touch screens, or the ability to work withhome automation or building automation systems.

Digital thermostats use either a relay or a semiconductor device such as triac to act as switch to control the HVAC unit. Units with relays will operate millivolt systems, but often make an audible "click" noise when switching on or off.

More expensive models have a built-in PID controller, so that the thermostat knows ahead how the system will react to its commands. For instance, setting it up that temperature in the morning at 7 a.m. should be 21°C, makes sure that at that time the temperature will be 21°C, where a conventional thermostat would just start working at that time. The PID controller decides at what time the system should be activated in order to reach the desired temperature at the desired time. It also makes sure that the temperature is very stable (for instance, by reducing overshoots).

Most digital thermostats in common residential use in North America and Europe are programmable thermostats, which will typically provide a 30% energy savings if left with their default programs; adjustments to these defaults may increase or reduce energy savings. The programmable thermostat article provides basic information on the operation, selection and installation of such a thermostat.

HVAC Installation Center City PA

HVAC (heatingventilation, and air conditioning) is the technology of indoor and vehicular environmental comfort. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamicsfluid mechanics, and heat transferRefrigeration is sometimes added to the field's abbreviation as HVAC&R or HVACR, or ventilating is dropped as in HACR (such as the designation of HACR-rated circuit breakers).

HVAC is important in the design of medium to large industrial and office buildings such as skyscrapers and in marine environments such as aquariums, where safe and healthy building conditions are regulated with respect to temperature and humidity, using fresh air from outdoors.

An air conditioning system, or a standalone air conditioner, provides cooling and humidity control for all or part of a building. Air conditioned buildings often have sealed windows, because open windows would work against the system intended to maintain constant indoor air conditions. Outside, fresh air is generally drawn into the system by a vent into the indoor heat exchanger section, creating positive air pressure. The percentage of return air made up of fresh air can usually be manipulated by adjusting the opening of this vent. Typical fresh air intake is about 10%

Air conditioning and refrigeration are provided through the removal of heat. Heat can be removed through radiationconvection, or conduction. Refrigeration conduction media such as water, air, ice, and chemicals are referred to as refrigerants. A refrigerant is employed either in a heat pump system in which a compressor is used to drive thermodynamic refrigeration cycle, or in a free cooling system which uses pumps to circulate a cool refrigerant (typically water or a glycol mix).

HVAC Repair Center City PA

In the United States, HVAC engineers generally are members of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), EPA Universal CFC certified, or locally engineer certified such as a Special to Chief Boilers License issued by the state or, in some jurisdictions, the city. ASHRAE is an international technical society for all individuals and organizations interested in HVAC. The Society, organized into regions, chapters, and student branches, allows exchange of HVAC knowledge and experiences for the benefit of the field's practitioners and the public. ASHRAE provides many opportunities to participate in the development of new knowledge via, for example, research and its many technical committees. These committees typically meet twice per year at the ASHRAE Annual and Winter Meetings. A popular product show, the AHR Expo, is held in conjunction with each winter meeting. The Society has approximately 50,000 members and has headquarters in Atlanta, Georgia.

The most recognized standards for HVAC design are based on ASHRAE data. The most general of four volumes of the ASHRAE Handbook is Fundamentals; it includes heating and cooling calculations. Each volume of the ASHRAE Handbook is updated every four years. The design professional must consult ASHRAE data for the standards of design and care as the typical building codes provide little to no information on HVAC design practices; codes such as the UMC and IMC do include much detail on installation requirements, however. Other useful reference materials include items from SMACNAACGIH, and technical trade journals.

American design standards are legislated in the Uniform Mechanical Code or International Mechanical Code. In certain states, counties, or cities, either of these codes may be adopted and amended via various legislative processes. These codes are updated and published by the International Association of Plumbing and Mechanical Officials (IAPMO) or the International Code Council (ICC) respectively, on a 3-year code development cycle. Typically, local building permit departments are charged with enforcement of these standards on private and certain public properties.

In the United States and Canada, as well as throughout the world, HVAC contractors and Air Duct Cleaning companies are members of NADCA, the National Air Duct Cleaners Association. NADCA was formed in 1989 as a non-profit association of companies engaged in the cleaning of HVAC air duct systems. Its mission was to promote source removal as the only acceptable method of cleaning and to establish industry standards for the association. NADCA has expanded its mission to include the representation of qualified member companies engaged in the assessment, cleaning, and restoration of HVAC systems, and to assist its members in providing high quality service to their customers. The goal of the association is to be the number one source for the HVAC air duct cleaning and restoration services. NADCA has experienced large membership growth in the United States, Canada and overseas and has been extremely successful with the training and certification of Air Systems Cleaning Specialists (ASCS)and Certified Ventilation Inspectors (CVI). The association has also published important standards and guidelines, educational materials, and other useful information for the consumers and members of NADCA. Standards include the Assessment, Cleaning and Restoration (ACR), Certified Ventilation Inspector (CVI) and other important guidelines.

HVAC professionals in the US can receive training through formal training institutions, where most earn associate's degrees. Training for HVAC technicians includes classroom lectures and hands-on tasks, and can be followed by an apprenticeship wherein the recent graduate works alongside a professional HVAC technician for a temporary period. HVAC techs who have been trained can also be certified in areas such as air conditioning, heat pumps, gas heating, and commercial refrigeration.

The three central functions of heating, ventilating, and air-conditioning are interrelated, especially with the need to provide thermal comfort and acceptable indoor air quality within reasonable installation, operation, and maintenance costs. HVAC systems can provide ventilation, reduce air infiltration, and maintain pressure relationships between spaces. The means of air delivery and removal from spaces is known as room air distribution.

Heaters exist for various types of fuel, including solid fuelsliquids, and gases. Another type of heat source is electricity, typically heating ribbons made of high resistance wire. This principle is also used for baseboard heaters and portable heaters. Electrical heaters are often used as backup or supplemental heat for heat pump systems.

The heat pump gained popularity in the 1950s.[where?] Heat pumps can extract heat from various sources, such as environmental air, exhaust air from a buildung, or from the ground. Initially, heat pump HVAC systems were used in moderate climates, but with improvements in low temperature operation and reduced loads due to more efficient homes, they are increasing in popularity in other climates.

Maintenance Program Center City PA

Preventive maintenance (PM) has the following meanings:

  1. The care and servicing by personnel for the purpose of maintaining equipment and facilities in satisfactory operating condition by providing for systematic inspection, detection, and correction of incipient failures either before they occur or before they develop into major defects.
  2. Maintenance, including tests, measurements, adjustments, and parts replacement, performed specifically to prevent faults from occurring.

The primary goal of maintenance is to avoid or mitigate the consequences of failure of equipment. This may be by preventing the failure before it actually occurs which Planned Maintenance and Condition Based Maintenance help to achieve. It is designed to preserve and restore equipment reliability by replacing worn components before they actually fail. Preventive maintenance activities include partial or complete overhauls at specified periods, oil changes, lubrication and so on. In addition, workers can record equipment deterioration so they know to replace or repair worn parts before they cause system failure. The ideal preventive maintenance program would prevent all equipment failure before it occurs.

There is a controversy of sorts regarding the propriety of the usage “preventative.”

Preventive maintenance can be described as maintenance of equipment or systems before fault occurs. It can be divided into two subgroups:

The main difference of subgroups is determination of maintenance time, or determination of moment when maintenance should be performed.

While preventive maintenance is generally considered to be worthwhile, there are risks such as equipment failure or human error involved when performing preventive maintenance, just as in any maintenance operation. Preventive maintenance as scheduled overhaul or scheduled replacement provides two of the three proactive failure management policies available to the maintenance engineer. Common methods of determining what Preventive (or other) failure management policies should be applied are; OEM recommendations, requirements of codes and legislation within a jurisdiction, what an "expert" thinks ought to be done, or the maintenance that's already done to similar equipment, and most important measured values and performance indications.

In a nutshell:

  • Preventive maintenance is conducted to keep equipment working and/or extend the life of the equipment.
  • Corrective maintenance, sometimes called "repair," is conducted to get equipment working again.

Electric Heat Center City PA

Electric heating is any process in which electrical energy is converted to heat. Common applications include space heatingcookingwater heating and industrial processes. An electric heater is an electrical appliance that converts electrical energy into heat. The heating element inside every electric heater is simply an electrical resistor, and works on the principle of Joule heating: an electric current through a resistor converts electrical energy into heat energy. Most modern electric heating devices use nichrome wire as the active element. The heating element, depicted on the right, uses nichrome wire supported by heat resistant, refractory, electrically insulating ceramic.

Alternatively, a heat pump uses an electric motor to drive a refrigeration cycle, drawing energy from a source such as the ground or outside air and directing it into the space to be warmed. Some systems can be reversed so that the interior space is cooled and the warm air is discharged outside or into the ground. Heat pumps can deliver three or four units of heating energy for every unit of electricity purchased, with the amount of heating energy delivered being a function of equipment efficiency as well as the temperature difference between the ground (or outdoor air) and the building interior.

The operation of electric resistance heaters to heat an area for a long period of time is generally considered to be costly. However, intermittent or partial day use can be more cost efficient than whole building heating due to superior zonal control.

Example: A lunch room in an office setting has limited hours of operation. During low use periods a "monitor" level of heat (50 °F or 10 °C) is provided by the central heating system. Peak use times between the hours of 11:00–14:00 are heated to "comfort levels" (70 °F or 21 °C). Significant savings can be realized in overall energy consumption, since infrared radiation losses through thermal radiation are not as large with a smaller temperature gradient both between this space and unheated outside air, as well as between the refrigerator and the (now cooler) lunch room.

Economically, electric heat can be compared to other sources of home heating by multiplying the local cost per kilowatt hour for electricity by the number of kilowatts the heater uses. E.g.: 1500 watt heater at 12 cents per kilowatt hour 1.5x12=18 cents per hour. When comparing to burning fuel it may be useful to convert kilowatts to BTUs.

In a convection heater, the heating element heats the air in contact with it by thermal conduction. Hot air is less dense than cool air, so it rises due to buoyancy, allowing more cool air to flow in to take its place. This sets up a convection current of hot air that rises from the heater, heats up the surrounding space, cools and then repeats the cycle. These heaters are sometimes filled with oil, which functions as an effective heat reservoir. They are ideally suited for heating a closed space. They operate silently and have a lower risk of ignition hazard if they make unintended contact with furnishings compared to radiant electric heaters. This is a good choice for long periods of time, or if left unattended.

Radiators Center City PA

Radiative heaters contain a heating element that reaches a high temperature. The element is usually packaged inside a glass envelope resembling a light bulb and with a reflector to direct the energy output away from the body of the heater. The element emits infrared radiationthat travels through air or space until it hits an absorbing surface, where it is partially converted to heat and partially reflected. This heat directly warms people and objects in the room, rather than warming the air. This style of heater is particularly useful in areas which unheated air flows through. They are also ideal for basements and garages where spot heating is desired. More generally, they are an excellent choice for task-specific heating.

Radiative heaters operate silently and present the greatest potential danger to ignite nearby furnishings due to the focused intensity of their output and lack of overheat protection. In the United Kingdom, these appliances are sometimes called electric fires, because they were originally used to replace open fires.

The active medium of the heater depicted at the right is a coil of nichrome resistance wire inside a fused silica tube, open to the atmosphere at the ends, although models exist where the fused silica is sealed at the ends and the resistance alloy is not nichrome.

An infrared heater or heat lamp is a body with a higher temperature which transfers energy to a body with a lower temperature through electromagnetic radiation. Depending on the temperature of the emitting body, the wavelength of the peak of the infrared radiation ranges from 780 nm to 1 mm. No contact or medium between the two bodies is needed for the energy transfer. Infrared heaters can be operated in vacuum or atmosphere.

One classification of infrared heaters is by the wavelength bands of infrared emission.

  • Short wave or near infrared for the range from 780 nm to 1400 nm, these emitters are also named bright because still some visible light is emitted;
  • Medium infrared for the range between 1400 nm and 3000 nm;
  • Far infrared or dark emitters for everything above 3000 nm.

IR heaters can satisfy a variety of heating requirements, including:

  • Extremely high temperatures, limited largely by the maximum temperature of the emitter
  • Fast response time, on the order of 1–2 seconds
  • Temperature gradients, especially on material webs with high heat input
  • Focused heated area relative to conductive and convective heating methods
  • Non-contact, thereby not disturbing the product as conductive or convective heating methods do

Thus, IR heaters are applied for many purposes including:

  • Curing of coatings
  • Plastic shrinking
  • Plastic heating prior to forming
  • Plastic welding
  • Glass & metal heat treating
  • Cooking
  • Warming suckling animals or captive animals in zoos or veterinary clinics

Central Air Conditioning Center City PA

Air conditioning (often referred to as A/CAC or aircon) is the process of altering the properties of air (primarilytemperature and humidity) to more comfortable conditions, typically with the aim of distributing the conditioned air to an occupied space to improve thermal comfort and indoor air quality.

In common use, an air conditioner is a device that lowers the air temperature. The cooling is typically achieved through a refrigeration cycle, but sometimes evaporation orfree cooling is used.

In the most general sense, air conditioning can refer to any form of technology that modifies the condition of air (heating, cooling, (de-)humidification, cleaning, ventilation, or air movement). However, in construction, such a complete system of heating, ventilation, and air conditioning is referred to as HVAC (as opposed to AC).

The basic concept behind air conditioning is said to have been applied in ancient Egypt, where reeds were hung in windows and were moistened with trickling water. The evaporation of water cooled the air blowing through the window. This process also made the air more humid, which can be beneficial in a dry desert climate. In Ancient Rome, water from aqueducts was circulated through the walls of certain houses to cool them. Other techniques in medieval Persia involved the use of cisterns and wind towers to cool buildings during the hot season.

Modern air conditioning emerged from advances in chemistry during the 19th century, and the first large-scale electrical air conditioning was invented and used in 1902 by American inventor Willis Carrier. The introduction of residential air conditioning in the 1920s helped enable the great migration to the Sun Belt in the United States.

The first air conditioners and refrigerators employed toxic or flammable gases, such as ammoniamethyl chloride, or propane, that could result in fatal accidents when they leaked. Thomas Midgley, Jr. created the first non-flammable, non-toxic chlorofluorocarbon gas, Freon, in 1928. The name is a trademark name owned by DuPont for any Chlorofluorocarbon (CFC),Hydrochlorofluorocarbon (HCFC), or Hydrofluorocarbon (HFC) refrigerant. The refrigerant names include a number indicating the molecular composition (e.g. R-11, R-12, R-22, R-134A). The blend most used in direct-expansion home and building comfort cooling is an HCFC known as R-22.

R-12 was the most common blend used in automobiles in the US until 1994, when most designs changed to R-134A due to the ozone-depleting potential of R-12. R-11 and R-12 are no longer manufactured in the US for this type of application, so the only source for air-conditioning repair purposes is the cleaned and purified gas recovered from other air conditioner systems. Several non-ozone-depleting refrigerants have been developed as alternatives, including R-410A. It was first commercially used by Carrier Corp. under the brand name Puron.

Modern refrigerants have been developed to be more environmentally safe than many of the early chlorofluorocarbon-based refrigerants used in the early- and mid-twentieth century. These include as HCFCs (R-22, used in most homes today) and HFCs (R-134a, used in most cars) have replaced most CFC use. HCFCs, in turn, are being phased out under the Montreal Protocol and replaced by hydrofluorocarbons (HFCs) such as R-410A, which lack chlorine.

Gas Leaks Center City PA

In common usage, a gas leak refers to a leak of natural gas from a pipeline or other containment into a living area or any other area where the gas should not be present. Because natural gas may explode when exposed to flame or sparks, this situation is very dangerous to the general public.  In addition to causing fire and explosion hazards, leaking flammable gases can kill vegetation, including large trees, and releases powerful greenhouse gases to the atmosphere.

Pure natural gas is colorless and odorless, and is composed primarily of methane. Unpleasant scents in the form of traces of mercaptans are usually added, to assist in identifying leaks. This odor may be perceived as rotting eggs, or a faintly unpleasant skunk smell. Persons detecting the odor must evacuate the area and abstain from using open flames or operating electrical equipment, to reduce the risk of fire and explosion.

As a result of the Pipeline Safety Improvement Act of 2002 passed in the United States, federal safety standards require companies providing natural gas to conduct safety inspections for gas leaks in homes and other buildings receiving natural gas. The gas company is required to inspect gas meters and inside gas piping from the point of entry into the building to the outlet side of the gas meter for gas leaks. This may require entry into private homes by the natural gas companies to check for hazardous conditions.

Most state and federal agencies have adopted the Gas Piping and Technology Committee (GPRTC) standards for grading natural gas leaks

Grade 1 leak is a leak that represents an existing or probable hazard to persons or property, and requires immediate repair or continuous action until the conditions are no longer hazardous. Examples of a Grade 1 leak are:

  • Any leak which, in the judgment of operating personnel at the scene, is regarded as an immediate hazard.
  • Escaping gas that has ignited.
  • Any indication of gas which has migrated into or under a building, or into a tunnel.
  • Any reading at the outside wall of a building, or where gas would likely migrate to an outside wall of a building.
  • Any reading of 80% LEL, or greater, in a confined space.
  • Any reading of 80% LEL, or greater in small substructures (other than gas associated sub structures) from which gas would likely migrate to the outside wall of a building.
  • Any leak that can be seen, heard, or felt, and which is in a location that may endanger the general public or property.

Grade 2 leak is a leak that is recognized as being non-hazardous at the time of detection, but justifies scheduled repair based on probable future hazard. Examples of a Grade 2 Leak are:

  • Leaks Requiring Action Ahead of Ground Freezing or Other Adverse Changes in Venting Conditions. Any leak which, under frozen or other adverse soil conditions, would likely migrate to the outside wall of a building.
  • Leaks requiring action within six months
  • Any reading of 40% LEL, or greater, under a sidewalk in a wall-to-wall paved area that does not qualify as a Grade 1 leak.
  • Any reading of 100% LEL, or greater, under a street in a wall-to-wall paved area that has significant gas migration and does not qualify as a Grade 1 leak.
  • Any reading less than 80% LEL in small substructures (other than gas associated substructures) from which gas would likely migrate creating a probable future hazard.
  • Any reading between 20% LEL and 80% LEL in a confined space.
  • Any reading on a pipeline operating at 30 percent SMYS,[expand acronym] or greater, in a class 3 or 4 location,[clarification needed] which does not qualify as a Grade 1 leak.
  • Any reading of 80% LEL, or greater, in gas associated sub-structures.
  • Any leak which, in the judgment of operating personnel at the scene, is of sufficient magnitude to justify scheduled repair.

Grade 3 leak is non-hazardous at the time of detection and can be reasonably expected to remain non-hazardous. Examples of a Grade 3 Leak are:

  • Any reading of less than 80% LEL in small gas associated substructures.
  • Any reading under a street in areas without wall-to-wall paving where it is unlikely the gas could migrate to the out-side wall of a building.
  • Any reading of less than 20% LEL in a confined space.

Carbon Monoxide Testing Center City PA

Some smoke alarms use a carbon dioxide sensor or Carbon monoxide sensor to detect characteristic products of combustion. However, some gas sensors react on levels that are dangerous for humans but not typical for a fire; these are therefore not generally sensitive or fast enough to be used as fire detectors. Other gas sensors are even able to warn about particulate-free fires (e. g. certain alcohol fires).

smoke detector is a device that senses smoke, typically as an indicator of fire. Commercial and residential security devices issue a signal to a fire alarm control panel as part of a fire alarm system, while household detectors, known as smoke alarms, generally issue a local audible or visual alarm from the detector itself.

Smoke detectors are typically housed in a disk-shaped plastic enclosure about 150 millimetres (6 in) in diameter and 25 millimetres (1 in) thick, but the shape can vary by manufacturer or product line. Most smoke detectors work either by optical detection (photoelectric) or by physical process (ionization), while others use both detection methods to increase sensitivity to smoke. Sensitive alarms can be used to detect, and thus deter, smoking in areas where it is banned such as toilets and schools. Smoke detectors in large commercial, industrial, and residential buildings are usually powered by a central fire alarm system, which is powered by the building power with a battery backup. However, in many single family detached and smaller multiple family housings, a smoke alarm is often powered only by a single disposable battery.

In the United States, the National Fire Protection Association estimates that nearly two-thirds of deaths from home fires occur in properties without working smoke alarms/detectors.

Possibly the earliest recorded examples of thermostat control were built by Cornelius Drebbel around 1620 in England. He invented a mercury thermostat to regulate the temperature of a chicken incubator.  This is one of the first recorded feedback-controlled devices.

Modern thermostat control was developed in the 1830s by Andrew Ure, a Scottish chemist, who invented the bi-metallic thermostat. The textile mills of the time needed a constant and steady temperature to operate optimally, so to achieve this, Ure designed the bimetallic thermostat, which would bend as one of the metals expanded in response to the increased temperature and cut off the energy supply.

The first electric room thermostat was invented in 1883 by Warren S. Johnson of Wisconsin. Albert Butz invented the electric thermostat and patented it in 1886.

One of the first industrial uses of the thermostat was in the regulation of the temperature in poultry incubators. Charles Hearson, a British engineer, designed the first modern incubator for eggs that was taken up for use on poultry farms in 1879. The incubators incorporated an accurate thermostat to regulate the temperature so as to precisely simulate the experience of an egg being hatched naturally.

Humidifiers Center City PA

humidifier is a household appliance that increases humidity (moisture) in a single room or in the entire house. There are point-of-use humidifiers, which are commonly used to humidify a single room, and whole-house or furnace humidifiers, which connect to a home's HVAC system to provide humidity to the entire house. Medicalventilators also often include humidifiers for increased patient comfort.

Excessively low humidity may occur in hot, dry desert climates, or indoors in artificially heated spaces. In winter, when cold outside air is heated indoors, the humidity may drop as low as 10-20%. This low humidity can cause adverse health effects, by drying out mucous membranes such as the lining of the nose and throat, and can cause respiratory distress. The low humidity also can affect wooden furniture, causing shrinkage and loose joints or cracking of pieces. Books, papers, and artworks may shrink or warp and become brittle in very low humidity.

In addition, static electricity may become a problem in conditions of low humidity, causing annoying static cling of textiles, and causing dust and small particles to stick stubbornly to electrically charged surfaces.

A "portable" humidifier may range in size from a small tabletop appliance to a large floor-mounted unit. The water is usually supplied by manually filling the unit daily or on some periodic basis.

For buildings with a forced-air furnace, a humidifier may be installed into the furnace. They can also protect wooden objects, antiques and other furnishings which may be sensitive to damage from overly dry air. In colder months, they may provide modest energy savings, since as humidity increases, occupants may feel warm at a lower temperature.[citation neededBypass humidifiersare connected between the heated and cold air return ducts, using the pressure difference between these ducts to cause some heated air to make a bypass through the humidifier and return to the furnace.

The humidifier should usually be disabled during the summer months if air conditioning is used; air conditioners partially function by reducing indoor humidity.

Overuse of a humidifier can raise the relative humidity to high levels, promoting the growth of dust mites and mold, and can also cause hypersensitivity pneumonitis(humidifier lung). A relative humidity of 30% to 50% is recommended for most homes.

A properly installed and located hydrostat should be used to monitor and control humidity levels automatically, or a well-informed and conscientious human operator must constantly check for correct humidity levels.

The USEPA provides detailed information about health risks as well as recommended maintenance procedures. If the tap water contains a lot of minerals, also known as hard water, then the ultrasonic or impeller humidifiers will produce a "white dust" (calcium is the most common mineral in tap water), which usually spreads over furniture, and is attracted to static electricity generating devices such as CRT monitors. The white dust can be prevented by using distilled water or a demineralization cartridge in ultrasonic humidifiers.

In addition, a stuck or malfunctioning water supply valve can deliver large amounts of water, causing extensive water damage if undetected for any period of time. A water alarm, possibly with an automatic water shutoff, can help prevent this malfunction from causing problems.

 

Call (215) 281-9376 to schedule an appointment today!

 

Coleman, Honeywell, Dupont, Crown Boilers, Aprilaire, GE, Emerson